427

Advances in Proteomics Research in Environmental Stress Response in Plants

Irsigler, A. S., Costa, M. D., Zhang, P., Reis, P. A., Dewey, R. E., Boston, R. S., & Fontes, E.

P., (2007). Expression profiling on soybean leaves reveals integration of ER and osmotic-

stress pathways. BMC Genomics, 8, 1–15.

Jacoby, R. P., Millar, A. H., & Taylor, N. L., (2010). Wheat mitochondrial proteomes provide

new links between antioxidant defense and plant salinity tolerance. Journal of Proteome

Research, 9, 6595–6604.

Kamal, A. H. M., Cho, K., Kim, D. E., Uozumi, N., Chung, K. Y., Lee, S. Y., Choi, J. S., et al.,

(2012). Changes in physiology and protein abundance in salt-stressed wheat chloroplasts.

Molecular Biology Reports, 39, 9059–9074.

Kawamura, Y., & Uemura, M., (2003). Mass spectrometric approach for identifying putative

plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. The

Plant Journal, 36, 141–154.

Kesseler, A., & Brand, M. D., (1994). Quantitative determination of the regulation of

oxidative phosphorylation by cadmium in potato tuber mitochondria. European Journal of

Biochemistry, 225, 923–935.

Kinoshita, T., Nishimura, M., & Shimazaki, K. I., (1995). Cytosolic concentration of Ca2+

regulates the plasma membrane H+ -ATPase in guard cells of fava bean. The Plant Cell, 7,

1333–1342.

Komatsu, S., Kobayashi, Y., Nishizawa, K., Nanjo, Y., & Furukawa, K., (2010). Comparative

proteomics analysis of differentially expressed proteins in soybean cell wall during flooding

stress. Amino Acids, 39, 1435–1449.

Komatsu, S., Wada, T., Abalea, Y., Nouri, M. Z., Nanjo, Y., Nakayama, N., Shimamura, S.,

Yamamoto, R., Nakamura, T., & Furukawa, K., (2009). Analysis of plasma membrane

proteome in soybean and application to flooding stress response. Journal of Proteome

Research, 8, 4487–4499.

Komatsu, S., Yamamoto, A., Nakamura, T., Nouri, M. Z., Nanjo, Y., Nishizawa, K., &

Furukawa, K., (2011). Comprehensive analysis of mitochondria in roots and hypocotyls of

soybean under flooding stress using proteomics and metabolomics techniques. Journal of

Proteome Research, 10, 3993–4004.

Kontunen-Soppela, S., Ossipov, V., Ossipov, S., & Oksanen, E., (2007). Shift in birch leaf

metabolome and carbon allocation during long‐term open‐field ozone exposure. Global

Change Biology, 13, 1053–1067.

Kosmala, A., Perlikowski, D., Pawłowicz, I., & Rapacz, M., (2012). Changes in the

chloroplast proteome following water deficit and subsequent watering in a high-and a low­

drought-tolerant genotype of Festuca arundinacea. Journal of Experimental Botany, 63,

6161–6172.

Kotchoni, S. O., & Gachomo, E. W., (2006). The reactive oxygen species network pathways:

An essential prerequisite for perception of pathogen attack and the acquired disease

resistance in plants. J. Biosci., 31, 389–404.

Kruft, V., Eubel, H., Jansch, L., Werhahn, W., & Braun, H. P., (2001). Proteomic approach to

identify novel mitochondrial proteins in Arabidopsis. Plant Physiology, 127, 1694–1710.

Kubo, T., Fujita, M., Takahashi, H., Nakazono, M., Tsutsumi, N., & Kurata, N., (2013).

Transcriptome analysis of developing ovules in rice isolated by laser microdissection. Plant

and Cell Physiology, 54, 750–765.

Le Gall, H., Philippe, F., Domon, J. M., Gillet, F., Pelloux, J., & Rayon, C., (2015). Cell wall

metabolism in response to abiotic stress. Plants, 4, 112–166.